ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • [Coursera] Stanford Machine Learning
    Study/Coursera 2020. 8. 22. 13:49
    반응형

    01. Introduction

    Machine Learning

    • Grew out of work in AI
    • New capability form computers

    Examples

    • Database mining
      • Large datasets from growth of automation/web.
      • E.g., Web click data, medical records, biology, engineering
    • Applications can't program by hand.
      • E.g., Autonomous helicopter, handwriting recognition, most of Natural Language Processing(NLP), Computer Vision.
    • Self-cusomizing programs
      • E.g., Amazon, Neflix product recommendataions
    • Understanding human learning (brain, real AI)

    02. What is machine Learning

    Machine Learning definition

    • Arthur Samuel (1959)

    Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.

    • Tom Mitchell (1998)

    Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some
    task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

    Machine learning algorithms:

    • Supervised learning
    • Unsupervised learning
    • Others: Reinforcement learning, recommender systems.

    03. Supervised Learning

    • "right answers" given

    Regression (회귀)

    • Predict continuous valued output(price)
    • 연속적인 결과값을 예측

    Classification (분류)

    • Discrete valued output (0 or 1)
    • 0 또는 1, 양성인지 악성인지 등과 같이 불연속적인 결과값을 예측

    04. Unsupervised Learning

    • 클러스터링 알고리즘 (ex 구글 뉴스)

    • 비지도 학습의 예

    • Orhanize computing clusters
    • Social network analysis
    • Market segmentation
    • Astronomical data analysis

    Cocktail party problem

    • 두 개의 소리가 녹음된 마이크에서 하나의 소리를 분리해내는데는 단 한 줄의 코드면 충분하다.

    Octave

    • Octave나 Matlab 같은 도구를 사용하면 많은 학습 알고리즘을 몇 줄의 코드로 구현할 수 있다.

    05. Linear regression with one variable Model representation

    • 집세에 대한 예측 (Housing Prices)

    • Supervised Learning
      • Given the "right answer" for each example in the data.
    • Regression Problem
      • Predict real-valued output
    • Classification

    Training set (학습 데이터)

    • Notation
      • m = Number of training examples
      • x's = "input" variable / features
      • y's = "output? variable / "target" varaible
      • (x, y) - one training example
      • (x(i), y(i)) - i th training example

    선형회귀

    • 단일변량 선형회귀
    • 단일변량 : 하나의 값

    Cost function (비용함수)

    • We can measure the accuracy of our hypothesis function by using a cost function.

    • 비용함수를 사용하면 주어진 데이터에 가장 가까운 일차함수 그래프를 알아낼 수 있다.

    • 이 함수를 "제곱 오차 함수" 또는 "평균 제곱 오차"라고 한다.

    Cost Function - Intuition I

    Cost Function - Intuition II

    Gradient descent

    • 기울기 하강은 기계학습의 모든 곳에서 실제로 사용되고 있음
    • 비용함수 j의 최소값을 구하는 알고리즘
    반응형

    'Study > Coursera' 카테고리의 다른 글

    Harvard CS50_ASCII 코드  (0) 2018.10.06
    Harvard CS50_2진수  (0) 2018.10.05
    Harvard CS50_비트와 바이트  (0) 2018.09.28
    Harvard CS50_기억장치  (0) 2018.09.23
    Harvard CS50_하드웨어  (0) 2018.09.09
Designed by Tistory.